Purpose
To determine the binding specificity of 18F-16α-17β-fluoroestradiol (FES) in estrogen receptor (ER) α–positive breast cancer cells and tumor xenografts.
Materials and Methods
Protocols were approved by the office of biologic safety and institutional animal care and use committee. By using ER-negative MDA-MB-231 breast cancer cells, clonal lines were created that expressed either wild-type (WT; 231 WT ER) or G521R mutant ERα (231 G521R ER), which is defective in estradiol binding. ERα protein levels, subcellular localization, and transcriptional function were confirmed. FES binding was measured by using an in vitro cell uptake assay. In vivo FES uptake was measured in tumor xenografts by using small-animal positron emission tomographic/computed tomographic imaging of 24 mice (17 WT ER tumors, nine mutant G521R ER tumors, eight MDA-MB-231 tumors, and four MCF-7 ER-positive tumors). Statistical significance was determined by using Mann-Whitney (Wilcoxon rank sum) test.
Results
ERα transcriptional function was abolished in the mutated 231 G521R ER cells despite appropriate receptor protein expression and nuclear localization. In vitro FES binding in the 231 G521R ER cells was reduced to that observed in the parental cells. Similarly, there was no significant FES uptake in the 231 G521R ER xenografts (percent injected dose [ID] per gram, 0.49 ± 0.042), which was similar to the negative control MDA-MB-231 xenografts (percent ID per gram, 0.42 ± 0.051; P = .20) and nonspecific muscle uptake (percent ID per gram, 0.41 ± 0.0095; P = .06).
Conclusion
This study showed that FES retention in ER-positive breast cancer is strictly dependent on an intact receptor ligand-binding pocket and that FES binds to ERα with high specificity. These results support the utility of FES imaging for assessing tumor heterogeneity by localizing immunohistochemically ER-positive metastases that lack receptor-binding functionality.
© RSNA, 2017
Online supplemental material is available for this article.
File: Salem-Kumar-et-al-Radiology-FES-binding-specificity-in-ER-positive-breast-cancer.pdf
The 2018 UWCCC outing to the Madison Mallards game is 7/26/18.
File: 2018_EAC_Mallards_UW-Carbone-Cancer-Center.pdf
See the list of posters presented at the 2018 Research Retreat.
File: 2018_research_retreat_posters_list.pdf
Take a stroll through the K tower and say hi to your coworkers this Halloween! Offices and open spaces marked with a star are offering candy.
File: Trick-or-Treat-Map-6.pdf
García-Rodríguez et al. Trabecular bone tissue is a three-dimensional structure that is difficult to duplicate with in vitro cell cultures or animal models. In an attempt to better understand the underlying
mechanisms of tissue response to load, a system to load isolated bone preparations was developed. This ex vivo bone culture and loading system, given the name of ZETOS, compressively loads trabecular bone (10 mm diameter, 5.0 mm height) to evaluate its morphological and physiological responses while keeping cells viable. Compliance of the system may change with time, thus requiring recalibration. The purpose of this research
was to develop and validate a recalibration protocol for the ZETOS system. Ten reference bodies (RBs) were designed and machined out of aluminum 7075-T6, with a structural rigidity range representative of trabecular bone (0.628–28.3 N/m, or apparent elastic modulus of 40 MPa–1.80 GPa). Finite element analysis (FEA) was used to calculate the rigidity of each RB and was validated with physical testing in a universal testing machine.
Results from FEA were then used to calibrate the system and relate force, piezoelectric actuator expansion, and specimen compressive deformation through a surface generated by spline interpolation, thus creating a calibration table. Calibration of ZETOS was verified by testing the RBs as well as three custom-made, metal springs and comparing measured rigidity to that calculated by FEA. Mean percent difference of FEA results with respect to those from physical testing was 3.28%. The mean percent difference of RB rigidity found with ZETOS with respect to rigidity found with FEA was 1.12% and for the metal springs, the mean percent difference was 1.74%. The calibration procedure for the ZETOS bone loading system has been successfully applied and verified. The use of RBs and FEA allows users to easily and periodically evaluate and recalibrate
the system. Accuracy in studies of human bone mechanotransduction in a controlled environment can therefore be achieved. The recalibration procedure is relevant for other ZETOS users and may serve as the basis for calibration of other testing systems for small specimens of compliant materials.
File: Garcia_et_al.pdf
How to access UW SAIF data from the radiology network
File: How_to_access_UW_SAIF_data_from_the_Radiology_Network_2015.pdf
Guidance on how to add flow cytometry and cell sorting experiments to Bio-ARROW protocols
File: UWCCC_Flow_Bio_ARROW.pdf
Instructions for describing flow cytometry analysis and cell sorting on your lab's biological safety protocol provided by the Office of Biological Safety
File: EHS-BIO-ARW-001-V01.pdf
Instructions on how to add or update funding accounts in iLab.
File: Adding-or-Updating-Funding-Accounts-in-iLab.pdf
Weichert et al.
Many solid tumors contain an over-abundance of phospholipid ethers relative to normal cells. Capitalizing on this difference, we created cancer-targeted alkylphosphocholine (APC) analogs through structure activity analyses. Depending on the iodine isotope used, radioiodinated APC analog CLR1404 was used as either a PET imaging (124I) or molecular radiotherapeutic (131I) agent. CLR1404 analogs displayed prolonged tumor-selective retention in 55 in vivo rodent and human cancer and cancer stem cell models. 131I-CLR1404 also displayed efficacy (tumor growth suppression, survival extension) in a wide range of human tumor xenograft models. Human PET/CT and SPECT/CT imaging in advanced cancer patients with 124I- or 131I-CLR1404, respectively, demonstrated selective uptake and prolonged retention in both primary and metastatic malignant tumors. Combined application of these chemically identical APC-based radioisosteres will enable personalized dual modality cancer therapy of using molecular 124I-CLR1404 tumor imaging for planning 131I-CLR1404 therapy.
File: Weichert_et_al_Alkylphosphocholine.pdf