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Purpose: To determine the binding specificity of 18F-16a-17b-flu-
oroestradiol (FES) in estrogen receptor (ER) a–positive 
breast cancer cells and tumor xenografts.

Materials and 
Methods:

Protocols were approved by the office of biologic safety 
and institutional animal care and use committee. By using 
ER-negative MDA-MB-231 breast cancer cells, clonal lines 
were created that expressed either wild-type (WT; 231 
WT ER) or G521R mutant ERa (231 G521R ER), which is 
defective in estradiol binding. ERa protein levels, subcel-
lular localization, and transcriptional function were con-
firmed. FES binding was measured by using an in vitro 
cell uptake assay. In vivo FES uptake was measured in 
tumor xenografts by using small-animal positron emis-
sion tomographic/computed tomographic imaging of 24 
mice (17 WT ER tumors, nine mutant G521R ER tumors, 
eight MDA-MB-231 tumors, and four MCF-7 ER-positive 
tumors). Statistical significance was determined by using 
Mann-Whitney (Wilcoxon rank sum) test.

Results: ERa transcriptional function was abolished in the mutated 
231 G521R ER cells despite appropriate receptor protein 
expression and nuclear localization. In vitro FES binding 
in the 231 G521R ER cells was reduced to that observed in 
the parental cells. Similarly, there was no significant FES 
uptake in the 231 G521R ER xenografts (percent injected 
dose [ID] per gram, 0.49 6 0.042), which was similar to 
the negative control MDA-MB-231 xenografts (percent ID 
per gram, 0.42 6 0.051; P = .20) and nonspecific muscle 
uptake (percent ID per gram, 0.41 6 0.0095; P = .06).

Conclusion: This study showed that FES retention in ER-positive 
breast cancer is strictly dependent on an intact recep-
tor ligand-binding pocket and that FES binds to ERa with 
high specificity. These results support the utility of FES 
imaging for assessing tumor heterogeneity by localizing 
immunohistochemically ER-positive metastases that lack 
receptor-binding functionality.

q RSNA, 2017
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inter pretation. Binding specificity has 
been inferred indirectly by demon-
strating reduced FES uptake when co-
administered with unlabeled estradiol 
(5,15–18). This is also evidenced in an-
imal models and patients who are ad-
ministered ERa antagonists that com-
pete with FES for the ligand-binding 
domain (19–22). Nonspecific FES bind-
ing may overestimate ERa expression 
and falsely indicate a high likelihood of 
response to endocrine therapy or insuf-
ficient antagonist drug dosing. In our 
study, we used a direct approach for 
testing FES binding specificity by which 
ERa is genetically altered to determine 
whether any sites for FES binding ex-
ist beyond the receptor ligand binding 
pocket. We hypothesized that breast 
cancer cells and tumors that express 
mutant ER protein that is incapable of 
binding estradiol would show no signif-
icant uptake of FES. The purpose of 
this study was to determine the binding 
specificity of FES in ERa-positive breast 
cancer cells and tumor xenografts.

Materials and Methods

The overall experimental design is il-
lustrated in Figure 1. To test the spec-
ificity of FES for the ligand-binding 
domain of ERa, we first generated sta-
ble cell lines constitutively expressing 

of ERa with radiolabeled estrogen, 
18F-16a-17b-fluoroestradiol (FES), can 
be used to help to determine the re-
ceptor status of all disease sites simul-
taneously and is particularly helpful 
when lesions suspected of being meta-
static cannot be biopsied. FES PET may 
also be a useful predictive imaging bio-
marker for treatment response. Stud-
ies (1,2) show that patients who have 
metastatic breast lesions with maxi-
mum standard uptake value below 1.5 
are unlikely to benefit from endocrine 
therapy. This finding is being prospec-
tively studied through a multi-institu-
tional phase II clinical trial in the Unites 
States. Furthermore, FES PET imaging 
is increasingly being used in European 
clinical practice (3,4).

Critical to implementation of FES 
PET imaging into clinical care is its 
ability to accurately depict ERa protein 
expression. FES binds the ERa receptor 
subtype with high binding affinity and 
selectivity (5,6). FES maximum stan-
dard uptake value correlates well with 
ERa protein expression (7–10). Over-
all sensitivity of FES PET for detection 
of ER-positive breast cancer was 82% 
(95% confidence interval: 74%, 88%) 
and overall specificity in lesions shown 
to be benign with histologic analysis 
and ER-negative breast cancer was high 
at 95% (95% confidence interval: 86%, 
99%) (7,8,11–14).

High-fidelity binding of FES is 
impor tant to prevent false-positive https://doi.org/10.1148/radiol.2017162956
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Advances in Knowledge

 n Stable, constitutive expression of 
wild-type (WT) estrogen re-
ceptor (ER) a in MDA-MB-231 
cells behaved similarly to endoge-
nously expressed ERa; however, 
the G521R ligand-binding domain 
mutation rendered the receptor 
functionally null despite appro-
priate protein expression and 
nuclear localization.

 n Whereas 18F-16a-17b-fluoroestra-
diol (FES) competitive binding 
curves appeared similar in the 
231 WT ER cells to the ER-posi-
tive MCF-7 cells, there was no 
specific FES binding in the 231 
G521R ER cells, which behaved 
similarly to the parental MDA-
MB-231 cells.

 n Tumor-to-muscle ratios of FES 
uptake by using PET/CT imaging 
were 0.97 6 0.07 in MDA-MB-
231 xenografts, 2.1 6 0.10 in 231 
WT ER xenografts, and 1.1 6 
0.08 in 231 G521R ER xeno-
grafts, which demonstrated a 
lack of FES retention (P = .20 
compared with parental MDA-
MB-231 xenografts) despite 
robust protein expression of 
G521R ERa in tumor xenografts.

Implications for Patient Care

 n ERa positivity by immunohisto-
chemistry indicates the presence, 
but not functionality, of ERa 
protein, which may be better 
assessed by using FES PET 
imaging.

 n These results support the utility 
of FES PET imaging for assessing 
intrapatient, intermetastatic 
tumor heterogeneity by localizing 
immunohistochemically ER-posi-
tive lesions that lack receptor-
binding functionality, which could 
direct further tissue biopsy for 
genomic analysis and optimize 
treatment.

Breast cancers routinely undergo 
testing for biomarkers, includ-
ing estrogen receptor (ER) a, 

progesterone receptor, and human 
epidermal growth factor receptor type 
2, that provide prognostic and predic-
tive information to guide treatment 
decisions. Endocrine-based therapies 
are aimed at directly antagonizing ERa 
function, depleting endogenous estro-
gen, or degrading ERa protein to stop 
estrogen-stimulated tumor growth. 
Unfortunately, resistance to endocrine 
therapy is frequent and has resulted 
in a need for accurate methods to de-
termine endocrine sensitivity and ERa 
functionality.

Molecular imaging of breast cancer 
is a promising noninvasive approach 
to guide treatment decisions and help 
predict response. Whole-body positron 
emission tomography (PET) imaging 
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Stable clonal cell lines that ex-
pressed either WT ERa (231 WT ER) 
or mutant G521R (231 G521R ER) 
were created by transfecting MDA-
MB-231 cells with an expression plas-
mid containing WT or mutant G521R 
ERa cDNA (24) by using previously 
described methods (25). Cells were ini-
tially selected by using 1000 mg/mL and 
maintained with 200 mg/mL hygromycin 
B (Life Technologies, Waltham, Mass).

In Vitro Assays
The methods used for immunofluores-
cence, Western blot analysis, reporter 
gene assays, and quantitative real-time 
polymerase chain reaction are included 
in Appendix E1 (online).

Tumor Xenografts
Experiments were performed accord-
ing to the American Association for 
Laboratory Animal Science guidelines 
with an approved protocol. Twenty-five 
female athymic NCr-nu/nu mice aged 
6 weeks were orthotopically injected 
with 1.5 3 106 cells at 1:1 ratio with 
Matrigel (BD Biosciences, San Jose, 
Calif) into the thoracic mammary fat 
pad. Palpable tumors formed in 24 of 
the 25 injected mice. Nine mice had 
one tumor xenograft each (right tho-
racic mammary fat pad) and 15 mice 
had two tumor xenografts each (one in 
the right thoracic mammary fat pad, 
one in the left thoracic mammary fat 
pad). There were eight tumors for the 
MDA-MB-231 xenografts, 17 tumors 
for the 231 WT ER xenografts, nine 
tumors for the 231 mutant G521R ER 
xenografts, and four tumors for the 
MCF-7 ER-positive xenografts. Tumor 
diameters were measured with cali-
pers, and volumes were calculated by 
using the formula [a ∙ b2/2], where a 
is the long diameter and b is the short 
diameter.

MCF-7 cells were used as a positive 
control to confirm correct FES radio-
synthesis because this ER-positive tu-
mor xenograft model was previously 
shown to have strong FES uptake (22). 
Because estrogen supplementation is 
required for MCF-7 xenograft forma-
tion, mice were given 17b-estradiol 
(E2; 10 mg/mL) in their drinking water 

ligand-binding pocket, then residual 
binding and uptake would be measured 
in the 231 G521R ER cells.

Cell Culture
Experiments were performed by using 
a protocol approved by the office of bio-
logic safety. ERa-positive (MCF-7) and 
ERa-negative (MDA-MB-231) human 
breast cancer cell lines were obtained 
from the Mallinckrodt Institute of Radi-
ology Pre-Clinical PET/CT Imaging Fa-
cility (Washington University School of 
Medicine, St Louis, Mo). Authentication 
was performed by using short tandem 
repeat analysis. Cells were cultured in 
Dulbecco’s modified Eagle’s medium 
(Corning, Corning, NY), supplemented 
with 10% fetal bovine serum (Corn-
ing) and 1% penicillin and streptomy-
cin (Gibco, Waltham, Mass) at 37°C 
and 10% CO2. For estrogen-depleted 
conditions, cells were grown in phenol 
red-free Dulbecco’s modified Eagle’s 
medium with 10% steroid-stripped fetal 
bovine serum, 2 mmol/L of l-glutamine,  
and 1% penicillin and streptomycin at 
37°C and 5% CO2.

either wild type ERa or G521R mu-
tated ERa. The mutation of glycine521 
to arginine in the human ESR1 gene is 
equivalent to the G525R mutation in 
the mouse ESR1 gene, which causes 
loss of estradiol binding (23). To our 
knowledge, this mutation has not yet 
been found in human breast cancers 
but represents a useful tool for mod-
eling a receptor deficient in ligand-
binding function. The generated stable 
cell lines were then characterized by 
using in vitro assays that measured 
ERa protein expression, nuclear local-
ization, and transcriptional function. 
Tumor xenografts were grown in fe-
male athymic nude mice and imaged 
by using FES PET/CT. After imaging, 
tumors were excised and analyzed for 
ERa protein expression by immunohis-
tochemistry and Western blot analysis. 
Because of the inability of the G521R 
mutant ERa to bind estradiol, we hy-
pothesized that FES uptake would be 
completely abolished if the binding 
of FES was strictly dependent on the 
ligand-binding pocket. If nonspecific 
binding of FES occurred outside of the 

Figure 1

Figure 1: Overall experimental design. Stable cell lines were generated 
and characterized by using in vitro assays measuring ERa protein expression, 
nuclear localization, and transcriptional function. Tumor xenografts were grown 
in 24 female athymic nude mice and imaged by using FES PET/computed 
tomography (CT). Nine mice had one tumor xenograft each (right thoracic 
mammary fat pad) and 15 mice had two tumor xenografts each (one in the 
right thoracic mammary fat pad, one in the left thoracic mammary fat pad). 
After imaging, tumors were excised and analyzed for ERa protein expression by 
immunohistochemistry and Western blot analysis. WT = wild type.
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was determined on the hematoxylin 
and eosin slides. ERa immunohisto-
chemistry staining intensity (0 = none; 
1 = weak; 2 = moderate; 3 = strong) 
and subjective percentage of cells with 
positive nuclear staining were scored.

Statistical Analyses
The nonparametric Mann-Whitney 
(Wilcoxon rank sum) test was used 
to compare ERa functional activ-
ity (reporter gene assay and quan-
titative polymerase chain reaction  
data) for the ethanol vehicle control 
versus estrogen-treated samples. FES 
uptake was compared between tumor 
xenografts by using the Mann-Whitney 
(Wilcoxon rank sum) test. P values less 
than .05 were considered to indicate sta-
tistical significance. Statistical analyses 
were performed by using software (R 
3.3.2, R Foundation for Statistical Com-
puting, Vienna, Austria; and GraphPad 
Prism 6.05, GraphPad, La Jolla, Calif).

Sample size calculations indicated 
that by using six mice with bilateral tu-
mors (12 tumors total) per group, a t 
test at a 5% one-sided significance level 
will have approximately 90% power to 
detect an effect size of 1.19 (Cohen d 
value defined as the difference between 
the two means divided by the pooled 
standard deviation). Xenograft tumors 
of 231 WT ER cells were initially im-
aged as part of a control experiment 
for technical confirmation of FES up-
take and were also included with imag-
ing of the MDA-MB-231 and 231 G521R 
ER xenografts, which accounts for their 
relatively larger sample size. A rela-
tively smaller number of MCF-7 tumors 
were imaged by using FES PET/CT sim-
ply as a positive control to confirm cor-
rect FES radiosynthesis and were not 
used for statistical comparison with the 
WT and mutant ER tumor models that 
used MDA-MB-231 cells.

Results

ERa Localization and Expression in 
Engineered Cell Lines
We observed nuclear localization of ERa 
protein in 231 WT ER and mutated 231 
G521R ER cells and in MCF-7 cells that 

hour after injection with FES. PET/CT 
images were co-registered and analyzed 
(Inveon Research Workplace 3.0; Sie-
mens Medical Solutions, Malvern, Pa). 
One of the authors (M.K., a research 
assistant with 3 years of experience with 
small animal PET/CT imaging) drew the 
regions of interest with training by the 
senior author (A.M.F., the principal in-
vestigator with 7 years of experience). 
Regions of interest were drawn around 
the tumor and within quadriceps and 
triceps muscles. The average volume 
for the regions of interest was 146 mm3 
(range, 16.3–630 mm3) for tumors and 
12.7 mm3 (range, 2.7–31 mm3) for 
muscle. Data are expressed as mean 
percent injected dose (ID) per gram. 
Tumor-to-muscle ratio was calculated 
as the ratio of mean percent ID per 
gram of tumor to that of muscle. The 
visual pattern of tumor FES uptake was 
also recorded descriptively.

Tissue Histologic Analysis
Excised tumors were fixed in 10% for-
malin and paraffin embedded. ERa 
immunohistochemistry was performed 
by using the Discovery XT automated 
platform (Ventana Medical Systems; 
Tucson, Ariz). Deparaffinization was 
performed followed by heat-induced 
epitope retrieval with CC1 buffer (tris-
based; pH, 8.5) for 60 minutes at 
100°C. ERa antibody (1:100 clone SP1; 
ThermoFisher, Waltham, Mass) was 
applied for 28 minutes at 37°C. After 
rinsing, OmniMap antirabbit–horse 
radish peroxidase antibody (Ventana 
Medical Systems) was applied for 8 
minutes, followed by rinsing. Chromo 
Map 3,3’-diaminobenzidine (Biocare 
Medical, Pacheco, Calif) detection was 
applied, followed by rinsing and appli-
cation of hematoxylin (CT Hematoxylin; 
Biocare Medical). Routine staining with 
hematoxylin-eosin was also performed. 
Slides were scanned at a magnification 
of 403 by using a whole-slide bright 
field imaging system (Aperio Image 
Scope software; Leica Biosystems, Buf-
falo Grove, Ill).

Slides were analyzed by a patholo-
gist with subspeciality training in breast 
pathology (A.M.M., with 4 years of ex-
perience). Percentage tumor necrosis 

until 2 days before they underwent FES 
imaging.

FES Cell Uptake Assay and Small-Animal  
PET/CT Imaging
FES was synthesized by our radiophar-
maceutical production facility after a 
previously reported method (26) with 
minor modifications. Specific activity 
at the end of synthesis exceeded 55.3 
GBq/mmol (1495 mCi/mmol).

For cell uptake assays, cells were 
plated 1.5 3 105 per well in 24-well 
plates. After overnight incubation, cells 
were washed twice with phosphate-
buffered saline and grown in estrogen-
depleted media. The following day, cells 
were incubated for 1 hour at 37°C with 
0.037 MBq (1 mCi) of FES added per 
well with unlabeled 17b-estradiol (10213  
to 1028 mol/L) or ethanol vehicle con-
trol. Cells were washed three times 
with phosphate-buffered saline and 
lysed with 1 normal NaOH. Collected 
radioactivity was measured with a g 
counter (2480 Wizard2; Perkin Elmer, 
Waltham, Mass) and corrected for de-
cay. Data for MCF-7 and 231 WT ER 
cells are shown as percent maximum 
uptake values (samples containing FES 
with no cold E2 added were 100%). Be-
cause no specific uptake of FES was ob-
served above background levels (sam-
ples without FES) for MDA-MB-231 
and 231 G521R ER cells, these values 
are expressed relative to MCF-7 cells. 
Half-maximal inhibitory concentration 
was determined by using nonlinear re-
gression–to–dose response inhibition. 
Three independent experiments were 
performed.

Twenty-four mice underwent FES 
PET/CT imaging. The number of tu-
mors measured with PET imaging was 
as follows: eight for the MDA-MB-231 
xenografts, 17 for the 231 WT ER xeno-
grafts, nine for the 231 mutant G521R 
ER xenografts, and four for the MCF-
7 ER-positive xenografts. For imaging, 
mice with tumor volumes of at least 
100 mm3 were injected in the tail vein 
with 9.25 MBq (250 mCi) FES, anesthe-
tized with 1.5%–2.0% isoflurane, and 
scanned supine in a dedicated small-an-
imal PET/CT scanner (Inveon; Siemens 
Preclinical Solutions, Knoxville, Tenn) 1 
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to progesterone receptor mRNA ex-
pression in MCF-7 cells after estro-
gen treatment (ethanol vs E2, 1.0 6 
0.03 vs 7.2 6 0.58, respectively; P , 
.0001). Similar to our results with the 
estrogen response element reporter 
gene assay, no induction of progester-
one receptor mRNA was observed in 
231 G521R ER (ethanol vs E2, 1.0 6 
0.06 vs 1.2 6 0.16, respectively; P = 
.50) and parental MDA-MB-231 cells 
(ethanol vs E2, 1.0 6 0.07 vs 1.0 6 
0.09, respectively; P = .84) treated 
with estrogen.

Loss of FES Uptake in 231 G521R ER Cells
By using a competitive binding as-
say, we observed FES binding com-
petition curves in the 231 WT ER 

cells after E2 treatment (luciferase/b-
galactoside activity, ethanol vs E2: 0.19 
6 0.069 vs 3.6 6 1.6, respectively; P 
= .03; Fig 3a). However, no significant 
estrogen-inducible transcriptional ac-
tivity was measured in 231 G521R ER 
cells (ethanol vs E2, 0.36 6 0.028 vs 
0.34 6 0.0046, respectively; P = .70), 
similar to the parental ER-negative 
MDA-MB-231 cells (ethanol vs E2, 0.11 
6 0.025 vs 0.10 6 0.025, respectively; 
P = .66).

There was an eightfold induction 
of progesterone receptor messenger 
RNA (mRNA) expression in estro-
gen-treated 231 WT ER cells (rela-
tive fold change, ethanol vs E2: 1.0 6 
0.06 vs 8.6 6 0.51, respectively; P , 
.0001; Fig 3b). This was comparable 

express endogenous WT ERa (Fig 2a).  
No immunofluorescent staining was 
observed in the parental ER-negative 
MDA-MB-231 cells.

We then performed Western blot 
analysis to measure ERa protein levels 
in each of the cell lines. ERa expression 
was 0.2 fmol/mg total protein 6 0.2 
(standard deviation) in MDA-MB-231 
cells, 470 fmol/mg total protein 6 140 
in 231 WT ER cells, 1478 fmol/mg total 
protein 6 214 in 231 G521R ER cells, 
and 811 fmol/mg total protein 6 180 in 
MCF-7 cells (Fig 2b).

ERa Functionally Inactive in 231 G521R 
ER Cells
Strong induction of ERa transcriptional 
activity was measured in the 231 WT ER 

Figure 2

Figure 2: Stable cell lines created with expres-
sion of either WT or mutated G521R ERa protein 
with appropriate nuclear localization for testing 
FES binding specificity. (a) Immunofluorescence 
of ERa localization. Upper panel: DAPI nuclear 
staining. Lower panel: Alexa Fluor 488 staining for 
ERa. Scale bar indicates 100 mm. (b) Western blot 
analysis of ERa protein expression. Images are 
representative of three independent experiments.
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binding in the 231 G521R ER cells, 
which behaved similarly to the paren-
tal MDA-MB-231 cells.

Loss of FES Uptake in 231 G521R ER 
Tumor Xenografts
Mean tumor volumes at the time of 
imaging for the MDA-MB-231, 231 
WT ER, and 231 G521R ER xenografts 
were 174 mm3 6 48, 135 mm3 6 34, 
and 129 mm3 6 34, respectively. FES 
uptake was observed in the 231 WT 
ER xenografts and was significantly 
greater than in the MDA-MB-231 xe-
nografts (mean percent ID per gram, 
0.85 6 0.045 vs 0.42 6 0.051, respec-
tively; P , .001) and in muscle (mean 
percent ID per gram, 0.85 6 0.045 vs 
0.41 6 0.0095, respectively; P , .001) 
(Fig 5). There was no significant FES 
uptake in the 231 G521R ER xeno-
grafts, which were similar to the neg-
ative control MDA-MB-231 xenografts 
(mean percent ID per gram, 0.49 6 
0.042 vs 0.42 6 0.051, respectively;  
P = .20) and nonspecific muscle uptake 
(mean percent ID per gram, 0.49 6 
0.042 vs 0.41 6 0.0095, respectively;  
P = .06). Tumor-to-muscle ratios in 
MDA-MB-231, 231 WT ER, and 231 
G521R ER xenografts were 0.97 6 
0.07, 2.1 6 0.10, and 1.1 6 0.08, re-
spectively (Fig 5). Strong FES uptake 
was observed in the positive control 
MCF-7 xenografts (tumor-to-muscle 
ratio, 7.2 6 0.60). Visual assessment 
of the pattern of tumor FES uptake 
demonstrated homogeneous central 
uptake in MCF-7 xenografts and het-
erogeneous peripheral uptake in the 
231 WT ER xenografts (Fig 5a).

ERa protein expression in the 
excised tumors was determined by 
using immunohistochemistry and 
Western blot analysis (Fig 5a; Table).  
Strong, relatively homogeneous recep-
tor expression was observed in the 
231 G521R ER and MCF-7 xenografts. 
However, we observed central tumor 
necrosis (40% 6 19) on hematoxylin-
eosin–stained slides and a heteroge-
neous ERa immunostaining pattern 
in the 231 WT ER xenografts, which 
corresponds to the heterogeneous pe-
ripheral FES uptake pattern observed 
by using PET.

(half-maximal inhibitory concentra-
tion, 0.13 nmol/L; 95% confidence 
interval: 0.12, 0.15) (Figure 4).  
However, there was no specific FES 

cells (half-maximal inhibitory con-
centration, 0.10 nmol/L; 95% con-
fidence interval: 0.09, 0.11) similar 
to that of ER-positive MCF-7 cells 

Figure 3

Figure 3: Bar graphs show ERa is functionally inactive in 231 G521R ER cells. A, Estrogen-deprived 
cells were transfected with estrogen response element–luciferase and b-galactosidase plasmids and then 
treated with ethanol (EIOH) vehicle or 10 nmol/L of 17b-estradiol (E

2 
) for 24 hours. Luciferase activity was 

measured and normalized to b-galactosidase activity. B, Progesterone receptor (PR) messenger RNA (mRNA) 
expression of estrogen-deprived cells was measured after 24 hours of treatment with ethanol or 10 nmol/L 
of E

2
. Values represent the mean 6 standard error of the mean of three independent experiments. ∗ P , 

.05 compared with the corresponding ethanol control.

Figure 4

Figure 4: Graph shows loss of FES uptake in 231 G521R ER cells. Estrogen-
deprived cells were treated with various concentrations of 17b-estradiol (E

2
 

range, 1028 to 10213 mol/L [M]) before addition of 0.037 MBq (1 mCi) FES for 
1 hour. Decay-corrected counts per minute were normalized to wells containing 
FES with no cold E

2
 for percent maximum uptake values. MDA-MB-231 and 

231 G521R ER cell values were expressed relative to MCF-7. Values represent 
the mean 6 standard error of the mean of three independent experiments.
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insufficient antagonist drug dosing. By 
using genetically modified cell lines with 
in vitro binding assays and in vivo small-
animal PET imaging, we demonstrated 
that FES binds to ERa with high spec-
ificity and is strictly dependent on an 
intact receptor ligand-binding pocket. 
FES uptake reflects receptor ligand-
binding functionality rather than the 
amount of receptor protein expression. 
These results are a direct confirmation 

FES binding to sites outside the ligand-
binding pocket of ERa or to nonspecific 
cellular proteins.

High-fidelity binding of FES to the 
ligand-binding domain of ERa is im-
portant to prevent false-positive im-
age interpretation because the pres-
ence of nonspecific radiotracer uptake 
may overestimate receptor expression 
and falsely indicate a high likelihood 
of response to endocrine therapy or 

Discussion

We directly tested FES binding speci-
ficity by modification of a single amino 
acid in the ligand-binding domain of 
ERa that abolishes estradiol binding but 
preserves the remaining function of the 
receptor and by expressing this mod-
ified receptor in stable cell lines with 
comparative genetic background and 
phenotypes. These results support the 
hypothesis that there is no substantial 

Figure 5

Figure 5: Loss of FES uptake in 231 G521R ER tumor xenografts. (a) Representative axial FES PET/CT images of tumor xenografts 
(arrows) grown in athymic nude female mice. Mice were injected with 9.25 MBq (250 mCi) of FES and images were obtained 1 hour 
after injection. FES uptake is also noted in gall bladder and liver because of physiologic hepatobiliary clearance. There are corresponding 
low- and high-power magnification images of ERa immunohistochemistry (IHC) and hematoxylin-eosin (H&E) staining of excised tumors 
(middle and left column in a, respectively). (b) Bar graph shows quantitative FES uptake assessed by mean percent ID per gram. Values are 
mean 6 standard error of the mean. ∗ P , .05 compared tumor uptake in MDA-MB-231 and 231 G521R xenografts and compared with 
nonspecific muscle uptake. Included were eight MDA-MB-231 xenografts, 17 231 WT ER xenografts, and nine 231 G521R ER xenografts.
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preclinical models (30,31). This could 
be because of endogenous circulating 
estrogen; however, this has not been 
shown to interfere with FES uptake in 
patients (32). Also, the relatively low 
amount of FES uptake in vivo may be 
partially explained by the amount of 
tumor necrosis that was highest in the 
231 WT ER xenografts. Despite this 
challenge, significant differences in 
FES uptake could be observed between 
the WT and G521R mutant xenografts 
to confidently demonstrate binding 
specificity. Finally, our study does not 
address factors beyond FES uptake 
that may predict clinical benefit from 
endocrine therapy such as progester-
one receptor (33).

To conclude, our results indicate 
that FES uptake reflects the receptor-
ligand binding functionality rather than 
the amount of receptor protein expres-
sion. These results support the utility 
of FES PET imaging for assessment 
of intrapatient, intermetastatic tumor 
heterogeneity by localizing immuno-
histochemically ER-positive lesions 
lacking receptor binding functionality, 
which could direct further tissue bi-
opsy for genomic analysis and optimize 
treatment.
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